Agenda

01 RFP Scope & Objectives
 Request for Proposal

02 Stakeholder Engagement
 Virtual and In-person

03 Data Analysis
 Extensive internal data

04 Field Observations
 Real time analysis

05 Outcomes
 Before and after

06 Summary
 Closing
RFP Scope & Objectives
Mobility analysis includes:

- Engagement
- Transit and Microtransit
- Cycling and Walking
- Placemaking, Micromobility, and Curb Management
- Transportation Demand Management (TDM)
- Parking Demand
Objectives

- Right-size transportation options based on anticipated future demand (post-pandemic future)
- Allow for a variety of feasible mobility options for all users
- Encourage faculty and staff to use modes outside of single-occupant vehicles
- Improve access and decrease congestion
- Support financial stability of auxiliary
Guiding Principles

Alignment with 2017 Campus Master Plan
Stakeholder Engagement
Engagement

Figure 1: Quick Poll Question
What mode of Transportation did you use to get to campus today?

- Drive Alone: 51%
- Carpool: 6%
- Transit: 12%
- Bike: 20%
- Walk: 10%

How many times a week do you use a bike to get around campus?

- More Than 3 Times: 25%
- 1 - 2 Times: 21%
- Not at All: 54%

Figure 76: Current Issues and Challenges Percentage Summary

- Amenities and aesthetics: 2%
- ADA: 2%
- Autonomous vehicles: 4%
- Information and communications: 5%
- Infrastructure: 5%
- Stallings Garage: 11%
- Other: 16%
- Transit: 20%
- Safety: 36%
Transportation Services

Engagement
Stakeholder Engagement Highlights

- **Safety** –
 - Dangerous interactions amongst vehicles, buses, bicycles and pedestrians
 - Bikes using sidewalks instead of the roadway
 - High traffic volumes on perimeter roads
 - Through traffic connections that lead to congestion and a large number of conflict points with pedestrians and bicyclists

- **Infrastructure** –
 - Inadequate design and maintenance of facilities
 - Roads, pathways, sidewalk surface conditions, lack of signalized intersections, and inadequate bicycle/pedestrian crossing controls

- **Gene Stallings Boulevard and Stallings Garage** – conflict points due to large traffic volumes of vehicles, pedestrians and bicycles

- **Transit** –
 - Overcrowding and wait time for buses
 - Inadequate number of buses on routes, providing service that is too infrequent and overcrowding on popular routes with crushing loads on buses
 - Poor maintenance of buses
Frequently mentioned challenge areas
3 Data Analysis
Field Observations
Figure 112: Traffic volumes on Ross Street between Asbury and Ireland Streets

- Ross St: 5,331
- Asbury St: 1,266
- Ireland St: 2,233
- Total: 8,820

Legend:
- Active Transportation
- Private Vehicle
- TAMU Vehicle
Field Observation

Proposed Enhanced Bike Lane – Pickard Pass

Modified Vehicular Entrance – Parking Lot 51
Field Observation

Temporary Curb Bump Outs - Bizzell Street and Polo Road

Enhanced Pedestrian Crossing—Parking Lot 51
5 Outcomes
Design Principles

- Restrict vehicle traffic
- Concentrate bus service at key access points
- Develop continuous and connected bicycle facilities
Figure 88: Design Interventions Key Map

A link to a live version of the map above may be found here.
Solving design details to make it easier to walk

Ross Street
Solving design details to make it easier to walk

Figure 110: Proposed experiment to increase pedestrian traffic area on Ross Street

Ross Street
6 Summary
Align scope with campus initiatives
Engage stakeholders
Gather data
Observe in the field
Communicate
Collaborate
Texas A&M University

AUTONOMOUS SHUTTLE
America’s First Dutch Junction

Sponsored: Texas A&M Transportation Institute and Texas A&M Transportation Services

Authors: W. T. Tennis, SID

Team Members: R. Brin (ISIT), M. Muhleir (ISIT), A. McKern (ISIT), M. PeRey (ISIT)

BACKGROUND

This is the first signalized Dutch Junction in the United States.

- The design is very popular in Holland where a lot of people use bicycles as their main form of transportation.
- Like any roundabout, cyclists should go around its CCW direction.
- The design keeps pedestrians and cyclists in front of cars line of action to improve safety and divert attention of the cyclists.
- Also keeps the cyclists from having to cross the car lanes for crossing or maneuvering

OBJECTIVES

- Effectively explain the operation of the intersection and Dutch Junction and discover metrics that describe the use taken by cyclists.
- Using the statistics, determine if the methodology of the green box, and finally, the conclusion of the Dutch Junction increases the amount of correct actions performed by the cyclists.
- From the data, identify the problem areas where safety can improve and then after the redesign of the Dutch Junction, the green box and finally, the design of the Dutch Junction increases the amount of correct actions performed by the cyclists.
- Trigger to TTI and TAMU Transportation Services how to improve the safety at the problem areas and the entire intersection as a whole.

RESULTS

- % Correct Actions: Before and After
 - Before: 45% (25.2%) 60% (34.8%)
 - After: 75% (25.2%) 80% (34.8%)

CONCLUSIONS

- In conclusion, the team is proud to design the intersection, a roundabout with a Dutch Junction (a circular junction). This is evidenced by the 45.2% decrease in the number of correct actions. However, there was still some effort to improve the intersection. For cyclists making a left turn, at 45% of the time they are sharing the road lane. Therefore, we recommended placement of an educational sign to both the North and South exits of the intersection, improving the proper movements for cyclists making left turns, right turns, and going straight.
TRANSPORT.TAMU.EDU

TEXAS A&M UNIVERSITY
Transportation Services

DESTINATION
AGGIELAND

Know before you go!
Your guide to getting to and from campus for Aggie events

Are you planning a trip to Aggieland and don’t know where to start?

Find Destination Aggieland in the Texas A&M app for maps, parking, traffic, shuttles & more!

Basketball Baseball Football

TRANSPORT.TAMU.EDU